
Training an M*DEL Expert
Multi-Domain Expert Learning (M*DEL) is an approach to training LLMs for expertise in knowledge domains.

This process involves branching from a base model and training the branch on specific domain data in order to establish an expert, which routing
logic is then able to activate in serving inference requests. The result is a framework for domain expertise that is easily-extensible, modular, and
efficient.

Contents

1 Prerequisites

2 Prepare the Compute Instance

3 Prepare the Training Data and Settings

4 Launch the Training

5 Run Inference Testing

6 Upload the Expert to HuggingFace

1.
2.
3.

1.
2.

3.

Prerequisites
M*DEL's Aurora model (aurora-m) will be used as the base and RunPod compute resources will be used for training. Also, Weights and Biases
will collect information during training for monitoring status, evaluating progress, and to allow comparing subsequent training runs for
performance.

Prior to beginning training, the following steps should be taken:

Create an account / log in at and accept the .HuggingFace terms and conditions for using the Aurora model
Create a account.Weights and Biases
Create an account / log in at and add an SSH key to allow terminal access to cloud instances:RunPod

Generate a key locally, if needed:

$ ssh-keygen -t ed25519 -C "your_email@example.com"
$ cat ~/.ssh/id_ed25519.pub

Paste this into RunPod at Account -> Settings -> Public Keys

In order to connect to instances at RunPod, it is recommended that an SSH client be used via local terminal. This is standard on MacOS and
Linux; for Windows, use .PuTTY

Prepare the Compute Instance
Axolotl is an LLM training tool that has been developed for fine-tuning models. A template exists at RunPod to easily launch a container where
Axolotl can be used for training an M*DEL expert.

To initialize the compute resources, log in at RunPod and perform the following steps:

Start from the and set the organization Account, as appropriate, from the top-right profile drop-down list.axolotl-runpod template
Scroll down to the "Previous Generation" section and click Deploy on the 1xA100 80GB GPU. Leave all settings at defaults and click the
Continue and Deploy buttons on subsequent screens. (The quantity of GPUs can be adjusted to make training faster, if desired, by clicking
"1x A100 80GB" on the first screen and selecting a greater quantity).
Once the axolotl-runpod instance is ready, and find the Connect button to get the command to use for "Basic SSH expand it on the Pods list
Terminal" access. Run this command in your local terminal to establish the connection.

Prepare the Training Data and Settings
With the compute environment initialized, the configuration and data to use for the training can be put into place.

Retrieve the M*DEL settings and samples for Axolotl:

$ cd /workspace/
$ git clone https://github.com/Stillerman/axolotl-mdel
$ cd axolotl-mdel

The SSH session uses . This allows for resuming the session if it drops due to a connection issue, but scrolling in TMUX does TMUX
not function like a standard terminal. .See the linked documentation and the for detailsTMUX Cheat Sheet

https://huggingface.co/
https://huggingface.co/aurora-m/aurora-m-v0.1
https://wandb.ai/
https://www.runpod.io/
https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html
https://runpod.io/gsc?template=v2ickqhz9s&ref=6i7fkpdz
https://www.redhat.com/sysadmin/introduction-tmux-linux
https://tmuxcheatsheet.com/

Provide CLI authentication to the terminal for HuggingFace and accounts:Weights and Biases

$ huggingface-cli login
[provide read/write token from https://huggingface.co/settings/tokens]
$ wandb login
[provide API key from https://wandb.ai/authorize]

Download the training data that comprises the domain expertise to use for this expert. If the data is accessible from the Internet, then wget or curl
can be used to pull it down to the RunPod instance.

$ wget [URL]

Alternatively, scp can be used to from a local file. Get the IP address and port from the "SSH over exposed TCP" details for upload data directly
the axolotl-runpod instance, which can be found by clicking the Connect button for the instance. Then, use those values in the scp command,
along with the same SSH key used to access the terminal of the instance already:

localhost:~$ scp -i ~/.ssh/[ssh-key] -P [port] [local-file] root@[ip-addr]:/workspace/axolotl-mdel

Next, make a configuration file to use for this training run with a meaningful filename; here, it is called "experiment1":

$ cp examples/aurora/lora.yml examples/aurora/experiment1.yml
$ vim examples/aurora/experiment1.yml

Lines in the .yml file that have comments runs to improve effectiveness and performance. For the first run, can be edited for subsequent training
be sure to set the "path" under datasets to point to the training data that has been copied to the instance and also set a name for wandb_project,
which is used to identify the collection of training runs in your Weights and Biases account.

Launch the Training
Training is launched on the compute instance with a single command:

$ accelerate launch -m axolotl.cli.train examples/aurora/experiment1.yml

This will pre-tokenize the dataset, download the model weights (which will be cached in /workspace/data/hf_home), and load checkpoints. Once
those steps are complete, the terminal output will show a link to "View run at ..." with a wandb.ai URL. This URL provides a dashboard for the
training job for monitoring status and performance.blocked URL

Both the terminal output and WandB dashboard will indicate when the training run is complete, at which point inference can be run.

To use example data for training, see the script.axolotl-mdel/scripts/download-mtg.py

If the following error appears when launching axolotl.cli.train: Error while finding module specification for 'axolotl.cli.train'
(ModuleNotFoundError: No module named 'axolotl')

Run the following additional commands within the RunPod instance:
$ pip3 install -e '.[deepspeed]'
$ pip uninstall flash_attn

This is a workaround for a temporary problem that was encountered and should be resolved shortly, if not already.

https://github.com/Stillerman/axolotl-mdel/raw/main/image/wandb.png

Run Inference Testing
Simple testing can be performed on the new expert model by launching an inference server with the .yml configuration file of the training run:

$ accelerate launch -m axolotl.cli.inference examples/aurora/experiment1.yml --lora_model_dir="./lora-
out" --gradio

This command will show a link with a gradio.live URL, which provides an interface to the model for testing inference. This is likely not sufficient for
chatbook integration, but is robust enough to demonstrate functionality of the new expert.

blocked URL

Note: If you want to inference using an alternative base model you can run the command without specifying a lora_model_dir. This will work for
any base model. Aurora and Starcoder examples below:

$ accelerate launch -m axolotl.cli.inference examples/aurora/experiment1.yml --gradio # this will
inference aurora
$ accelerate launch -m axolotl.cli.inference examples/starcoder/lora.yml --gradio # this will
inference starcoder

Upload the Expert to HuggingFace
Optionally, the newly-trained expert model can be uploaded to HuggingFace to make it easy to use later. This would be accomplished with the
following command:

$ huggingface-cli upload [repo-id] [local-path] [path-in-repo] --token=[token with WRITE permission]

For example:

$ huggingface-cli upload stillerman/aurora-mathematica ./lora-out/ . --token=...

This uploads the model to the Hub at HuggingFace and is public, by default. Add the flag to make it private. --private

https://github.com/Stillerman/axolotl-mdel/raw/main/image/gradio.png

	Training an M*DEL Expert

